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AN INVESTIGATION OF METHODS FOR IMPROVING
ESTIMATION OF TEST SCORE DISTRIBUTIONS

Bradley A. Hanson



ABSTRACT

This paper considers three methods of estimating test score distributions

that potentially improve upon the observed frequencies as estimates of a

population test score distribution: the kernel method, the polynomial method,

and the 4-parameter beta binomial method. The assumption each method makes

about the smoothness of the tme distribution and computational details of the

methods are described. The methods are compared with a simulation study in

which 500 samples of size 500, 1000, 2000, and 5000 are taken from each of 3

population distributions. The three population distributions are defined

using observed raw score distributions on three tests for which a large number

of examinees are available. All the methods based on smoothness assumptions

performed far better than using the observed frequencies. The differences

among the performance of the methods were small compared to the difference

between performance of the worse performing method and using observed

frequencies. The 4-parameter beta binomial method performed be..:t in the

simulation study across all conditions, although the polynomial method

performed equivalently for sample sizes of 5000. The polynomial method

generally performed better than the kernel method except for one of the

populations for which the test score distribution was relatively flat.

Conclusions and suggestions are offered concerning the use of the methods in

practice.



This paper will investigate three methods for potentially improving on

observed frequencies as estimates of a population raw test score

distribution. These methods have the potential to provide better results Ithan

using the observed frequencies in applications in which the estimates of the

population raw test score distribution are used. Examples of such

applications are: describing and comparing raw test score distributions,

constructing norms, and equating using equipercentile methods (Kolen, 1988).

The potential improvement offered by each of the three estimation methods

is based on introducing assumptions about the smoothness of the population

distribution. The methods are distinguished by the specific assumptions about

the smoothness of the population distribution that are made. The suc,:ess of

each method in any specific case will depend on the appropriateness of the

smoothness assumptions made by the method for that case.

In order to evaluate the improvement of an estimation technique based on

smoothness assumptions over using observed frequencies it is necessary to have

a criterion to measuring the performance of an estimation method. In this

paper the primary measure of the performance of an estimation method for a

particular sample will be average squared error defined as

1 r
ASE f(i))2 ,

1=0
(1)

where K is the number of items on the test, f(i) is the true probability of

raw score i, and NO is an estimate of f(i). Across samples, the expected

value of ASE (E[ASE]) will be used as a criterion. E[ASE] will be referred to

as mean squared error (MSE). The mean squared error can be written as the sum

of two quantities to be referred to as bias squared and variance
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1

i0

k
MSE =

K+1
2 EU(i))12

1
E[i(i)

K+=
i=0

bias2 variance (2)

Methods of discrete density estimation based on smoothness assumptions

have reduced variance as compared to the observed frequencies but generally

introduce bias (whereas the observed frequencies are unbiased estimates of the

true frequencies).

The next section describes three density estimation methods based on

smoothness assumptions. The following section describes a simulation study

comparing the three methods.

Density Estimation Methods

This section descr..bes the smoothness assumptions that are the basis of

the three density estimation methods to be compared and the computational

details for each method.

Kernel Techniques

If f(i) is the probability of raw score, i, i = 0, K, in the

observed sample, then the kernel estimate of the true probability of raw score

i (f(i)) is given by a local weighted average of f(j), for j in a neighborhood

of i. Specifically, the locally weighted average of f(j) is computed as

i+h./2
h.

a(i) = wi(j - i + f(j) ,

A

(3)

where f(j) E 0 if j < 0 or j > K, and hi (an even positive integer) is a

parameter that determines the width of the local neighborhood of raw score i

over which the weighted average is taken. The w(k) > 0, k = 0, h, are

referredtoasthekErnelforraviscorei.Thevi.(k) are taken to sum to 1

over k, so that the kernel is a discrete probability distribution. Tae kernel

7
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estimate of f(i) is given in terms of the a(i) as

i; a(i)
k

a(

j=0

(4)

If f(i) = f(i) + e(i), where e(i) f(i) - f(i), then the smoothness

assumption under which the kernel technique works well is that the variation

in f(i) in the neighborhood of i used to compute a(i) is "small" compared to

the variation in e(i) in that neighborhood. To see this write ik(i) as

i+h./2
I.

i + (h./2))[f(j) + e(j)] 9

j=i-hi/2 1

w.(j i + (h./2))
where Td.(j - + (h./2))

1

a(j)
j=0

(5)

From Equation 5 it is seen that the variance of ik(i) only depends on the

t...rmst.i.(j-i+(1./2)) e(j). Hence, the variance of (i) will, in most

practical situations, be less than the variance of fk(i) due to

*w.(j - i + (h./2)) being less than 1 for all j. The bias of i (i) is given by

thedifferencecd"andalesurnofv)) f(j), which will not

in general be zero. The kernel technique will work well for estimating f(i)

when the bias introduced is less than the reduction of variance, which will

occur when f(j) is smooth in the sense that for the sample size under

consideration the variation of f(j) is less than the variation in e(j) in the

neighborhood of i used to compute

Npplication of the kernel method to produce a density estimate requires

selectioncdthekernel(w.(k)) andwindowwidths(h.)for all raw score

points i. In this paper the binomial kernel will be used. For window width

8
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h, the binomial kernel is w(k) = prob(Z = k), where the random variable Z has

a binomial distribution with parameters h and .5.

Given the kernel to be used, producing a kernel density estimate then

reduces to selecting the window widths (hi) to use at each raw score point.

This task is made simpler by requiring hi = h be constant for all raw score

points. The kernel method with h constant across raw score points will be

referredtoasthefixedkernelmethod.Thekernelmthodinwhichtheh.are

allowed to vary across raw score points will be referred to as the variable

kernel method.

The strategy to be employed in choosing h for the fixed kernel method

will be to estimate ASE for different values of h and choose the h suc!. that

the estimated ASE is minimized. Cross validation will be used to estimate

ASE.

Efron (1983, remark B) and Wong (1983) discuss using bootstrap, jackknife

and cross validation methods for choosing smoothing parameters in density

estimation. The discussion here will follow Efron (1983). Writing

f(i))2 = ?(02 + f(i)2 - 2 NO f(i), it can be seen that mileiling

ASE is equivalent to minimizing the quantity

Err = [NO]2 - 2 f(i) i(i) .

i=0 i=0

(6)

An obvious estimate of Err is given by replacing the unknown quantity f(i)

with f(i). This estimate will tend to underestimate Err since NO is

computed using f(i), and will be referred to as the over-optimistic estimate

of Err (and denoted err). For the purposes of choosing a window width, using

err as an estimate of Err will always result in the smallest window width

being chosen. Let w E(Err err) be the expected amount by which err
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underestimates Err. If w were known then an estimate of EL-r, which would De

bezter than using err, could be obtained as: err + w.

The bootstrap estimate of w is obtained by taking the expectation used to
A

define w over f(i) rather f(i). The bootstrap estimate of w is given by

boot
= 2 E

* -* A* A

f (f f(i)) 1, (7)

i=0

A

where the "*" indicates sampling from f(i). Therefore, is an estimate

A*
of the true density based on a sample density f ,i), which is a sample from

f(i), and E indicates an expectation over sampling from f(i). w
boot

can

be c3mputed by Monte Carlo methods as follows. B samples

A*b .

(f (I), b = 1, b) are simulated from f(i) and the estimated density
A
boot*b

(0 i) is computed for each sample. s then approximated by

B K

ru(i) (i*b(i) f(i)) .

b=1 i=0

boot .

is added to err to produce an estimate of Err.

(8)

The jackknife estimate of w is a second order approximation of w
boot

(Efrnn, 1983, 1982) given by

K K

Ca jack 4 y [t .(i) Ai) - t f(i)
1j=0

K+I .

=0 -J

f(i)
1

1121 ;(') n-1
where f (0 =

{ n
f(i)

n-1

j=i

L 0

(9)
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ilistilesamplesize,andi.(oistheciensityestimateusingf.00 in place
-J -J

of f(2), 9 = 0, .., K. The jackknife estimate of w is less computationally

burdensome than computing the bootstrap estimate by Monte Carlo methods.

The cross-validation estimate of Err is a modification of err with

(i) in place of NO in the expression involving f(i):

K
v r

Errc =
-

2,2-21f(i)i.(i )
1

i=0 i=0

This modification shoulk, reduce the overestimation of err. The cross-

validation estimate of w is given by:

w"=-21((i)f(i)-?
-1(i)

f(i)]
i=0

(10)

Comparing Equations 11 and 9 it is expected that the cross-validatitn estimate

of Err and the jackknife estimate of Err will be similar. Efron (1983) found

this co be true with cross validaticn and jackknife estimates of prediction

error in a dichotomous prediction problem. As is seen by comparing Equations

11 and 9, che cross-validation estimate of Err requires less computation than

the jackknife estimate.

Kolen (1988) shows that for the fixed kernel density estimate a simple

approximate expression exists for the cross-validation estimate of Err which

only requires one kernel estimate be computed for each value of h. The

expression derived here uses a slightly different approximation than the

expression given by Kolen (1988), but the two expressions seem to produce very

similar results.
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First, note that if 'fit (i) is the fixed kernel estimate with window width

h then .(i) (the estimate based on f .(2) rather than
k
h,

-1

f(t), t = 0, K) can be written as

i+h/2

kh'-i
=

1

Xw(j".i. "11/2)"-.(i)
1

a_.(j)
j=0

i+h/2
1

/ w(j
K

- i + (11/2)) -2- f(j)
w(h/2)_

j=i-h/2
n-f n-1 ' (12)

j=0 --1

A

wherea_i(i)isgivenbyEquation3withf-.(i) substituted for f(i). If the
1

sum of a_ .(j) is approximately equal to the sum of a(j) then . (0 can be
k
h'

--x

approximated by

w (h/2)

kh'-1
n-1 k

h
n-1 '

(13)

substitutingthisapproximateexpressionfor?.(i) in Equation 10 gives an
-1

approximate cross-validation estimate of Err for the kernel estimate with

window width h:

cv
Errh .4 (ik (OP

i=0 h

2n

n-1

K
w (h/2)]

i=0
(14)

The expression for the approximate cross-validation estimate of Err given by

Equation 14 is computationally efficient in that it only requires the kernel

estimate to be computed once for each h.

The fi, ' kernel estimate used in this paper is obtained by computing the

kernel estimate (using the binomial kernel) for h = 2, 4, ..., 36 and choosing

the h that minimizes Equation 14.



8

Table 1 presents results from a small simulation study comparing the

performance of Equation 14 with the bootstrap estimate of Err
boot

using w

from Equation 7 in choosing the v1uof h that minimizes Err for the kernel

estimate (200 bootstrap samples were used). Ten samples of size 1000 were

simulated from a 4-parameter beta binomial distribution (Lord, 1965) that was

fit to a raw score distribution of 980 college-bound 10th grade examinees on a

recent form of the 50-item P-ACT+ writing test. For each of the 10 samples,

fixed keenel estimates using values of h from 2 to 36 were computed and Err

was estimated with the bootstrap using Equation 7 and cross validation using

Equation 14. Table 1 presents the values of h and corresponding values of Err

chosen by both the bootstrap and cross validation along with the h that

produces the minimum Err for each sample. For 6 of the 10 samples the kernel

estimate using the h picked by the bootstrap has lower Err than the

corresponding estimate using the h picked by cross validation. For two of the

samples the estimate using the h picked by cross validation has lower Err than

the estimate using the h picked by the bootstrap. For the remaining two

samples the same value of h is picked by both cross validation and the

bootstrap. The average error across samples using cross validation is

slightly lower than the average error using the bootstrap.

Even though the results reported in Table I are very limited, they

sugge..t that choosing h using the approximate cross-validation formula (14)

can work fairly well compared to the bootstrap, with sample sizes of around

1000.

Estimates of Err can also be obtained at each score point. Equating 14

can be written as

K

Errc = Errcv(i)
i=0

toz

(15)
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n -
where Err"(i) (i)]2 2 f(i) [

i712-T
f
k

1

1
w * (h/2)]

n-

Each Err
cv

h
(0 is a cross-validation estimate of

Err
h

(OP - 2f(i) (i). Equation 15 could be used in a manner
k
h

analogous to the use of Equation 14 in the fixed-kexnel method to choose a

value of h for each raw score value.

The variable kernel estimate used in this paper is obtained by computing

the kernel estimate for values of h from 2 through 36 and at each raw score

point i, choosing the h. that minimizes Err"(i). The resulting values of h.

are then smoothed as a function of i using a robust 3RSS median smoother twice

(Tukey, 1977). The purpose of smoothing the values of h. chosen by cross

validation is to reduce large fluctuations in the values of hi as a function

of i.

Polynomial Method

The polynomial smoothing method is based on the following smoothness

assumption:

log(f(i)) =a +a1 i+
2
ai2 + +a id (16)

0

where d is small relative to K. The true density is assumed to be smooth in

the sense that its log is a low order polynomial function of the raw score.

When d = K Equation 16 will hold for any f(i): i.e., in this case Equation 16

is a representation of f(i) rather than a model. Haberman (1974) discusses

estimation and the seleczion of d for a generalization of the model of

Equation 16 in which two ordered categories are modeled. Rosenbaum and Thayer

(1987) discuss using the Haberman model for the estimation of bivariate raw

test score distributions.

There are two nice properties of maximum likelihood estimates of the

parameters in Equation 16 (Darroch and Ratcliff, 1972). First, if maximum

I 3
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likelihood is used t.. fit a model of degree d then the first d moments of the

estimates and observed distributions will be the same. Second, the maximum

likelihood estimate of the distribution given by Equation 16 is the

distribution with maximum entropy of those discrete distributions whose first

d moments are equal to the first d moments of the observed distribution.

The polynomial method of density estimation using the distribution given

by Equation 16 involves two steps: selection of a value of d, and estimation

of the parameters in Equation 16 by maximum likelihood using the value of d

chosen.

In this paper, Haberman's (1974) model selection strategy will be used to

choose d. First, the value of q is chosen such that the true density fits the

model given by Equation 16 with d nt most equal to q. If Lf is the

likelihood ratio chi-square for the maximum likelihood fit of the model of

degree i then for j = 2, ..., q, L-1? L? is the likelihood ratio chi-square
j

for the null hypothesis H3_1 versus Hi, where Hi is the hypothesis that the

model of degree j is true. Haberman (1974) states that if Hi* is true then

.*
the statistics L? L? for = q, q - 1, ..., j + 1 are asymptotically

J-1

independent chi-square distributions with 1 degree of freedom. For a level of

le
significance y, with y = 1 - (1 - y)

1/(q-1)
, the probability that

11_1 - Li, j = q, q - 1, ..., j + 1 exceeds C, the upper y percentage point

for the chi-square distribution with 1 degree of freedom is asymptotically no

greater than y. A simultaneous test of the hypotheses Hj, j = q - 1, q 2,

1, is to reject all hypotheses Hi such that j < j', where j' is the

largest j such that L?
1
- L? > C. With values of q and y specified, this

j-

hypothesis testing procedure would allow one to eliminate from consideration

models with degrees less than j'; it gives no guidance for choosing from among
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the models with degree greater than or equal to j and less than or equal

to q.

The rationale of Haberman's model selection procedure, based on

identifying the "true" model, is not necessarily consistent with the goal of

selecting a model that minimizes the average squared error (Equation 1) for a

sample. Even if there were a model with degree less than K that produced an

estimate that was identical to the true density, there is no reason why this

degree would minimize the average squared error for a particular sample, a

degree higher or lower than the true degree may have a smaller average squared

error for the sample. Using a bootstrap, jackknife, or cross-validation

estimate of Err to choose a model might work better than the hypothesis

testing procedure, although any of these resampling procedures would require

extensive computation. There is no formula analogous to that of Equation 14

for the fixed kernel method that would give an estimate of Err based on

fitting model give: by Equation 16 one time for each degree.

In this paper values of q = 10 and y = .10 will be used for the

polynomial estimation method. The model wi. the smallest number of

parameters that is not rejected by the Haberman procedure will be used as the

degree of polynomial to be fit. Equation 16 will be estimated by maximum

likelihood using the Newton-Raphson algorithm (Haberman, 1974) for the degree

of polynomial chosen.

Beta Binomial Method

The 4-parameter beta binomial method makes the most specific smoothness

assumptions of the methods considered in this paper. This method assumes the

true density is a member of a four parameter family of smooth densities: the

four parameter beta binomial distribution (Lord, 1965). The rationale behind

the use of this family oe. densities is a strong true score model in which

1 4
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examinee true scores are assumed to have a four parameter beta distribution,

and the distribution of raw scores conditional on true score is binomial. A

two-term approximation to the compound binomial can be used in place of the

binomial, but in practice this does not seem to improve the fit to raw score

distributions over using the binomial (Lord, 1965). Two of the parameters of

the four parameter beta distribution (denoted p and q) determine the shape of

the distribution (i.e., they completely determine all properties of the

distribution except scale and location). The remaining two parameters

(denoted a and b) are the lower and upper limits of the proportion correct

t.eue score distribution. The true score distribution has nonzero density only

between the lower and upper limits.

In this paper, the method of moments will be used to estimate the four

parameters (Lord, 1965). First, the formula for the relation of raw score to

true score moments given by Lord (1965) is used to produce estimates of the

first four true score moments from estimates of the first four raw score

moments. The parameters are then calculated using an expression giving the

parameters in terms of the first four true score moments. This expression is

obtained by solving the equations giving the mean, variance, skewness, and

kurtosis of a 4-parameter beta distribution in terms of p, q, a, and b for the

parameters. The solution for p and q given by Johnson and Kotz (1970, their

Equation 13, page 41) is incorrect. The correct solution for p and q can be

obtained using their expression for r = p + q (which is correct) given above

their Equation 13 to solve their Equations 8.3 and 8.4 for p and q. The

expressions for parameters a and b are then obtained using these expressions

for p and q and solving the equations giving the mean and variance in terms of

p, q, a, and b for a and b.
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In some cases, the expression for the parameters in terms of the true

score moments will not have a solution, or the solution will contain one or

more invalid parameter values (e.g., an upper limit greater than 1). In this

case, parameter estimates are found t; requiring that the mean, variance, and

skewness of the observed and fitted distribution agree, which will determine

three of the four parameters (p, q, and b are used here), and choosing the
,

value of the fourth parameter (a) that minimizes the squared difference in the

observed and fitted kurtosis. This procedure was successful in producing

parameter estimates for all the actual and simulated data sets considered in

this paper, i.e., in all cases parameter estimates could be found such that at

least the first three moments of the observed and fitted raw score

distributions agreed.

Equation (59) of Lord (1964) was used to compute the estimated 4-

parameter beta binomial raw score distribution using the 4 estimates

parameters of the beta distribution (this expression for the raw score

distribution does not appear in Lord, 1965).

Illustration of the Estimation Methods

Figures 1 and 2 present 4-parameter beta binomial, polynomial, fixed

,

kernel, and variable kernel estimates for two data sets. Figure 1 presents

the raw score distribution for 3039 examinees for a recent form of the ACT

Mathematics test. Figure 2 presents the raw score distribution for 1727 llth

grade examinees on a recent form of the P-ACT+ Writing test (this data was

obtained from a special study in which the P-ACT+ was administered). For the

data in Figure 1 a polynomial of degree 5 and a fixed kernel window width of 8

were chosen using the procedures described above. For the data in Figure 2 a

polynomial of degree 6 and a fixed kernel window width of 2 were chosen.

1 t;
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For both data sets the 4-parameter beta binomial and polynomial methods

produced good fits. The kernel methods provided good fits for the data in

Figure 1, although the kernel fits were more bumpy than the fits of the other

two methods. The window widths chosen hy the kernel methods for the data in

Figure 2 do not seem to provide enough smoothing.

A Study Comparing the Estimation Methods

The primary criterion used in this paper for evaluating the performance

of an estimation method across samples is the mean squared error given in

Equation 2. A simulation study similar to that of Cope and Kolen (1987) is

used here to provide some information on the relative performance of the

estimation methods in terms of the mean squared error for some realistic

situations. Observed raw score distributions for tests for which data from a

very large number of examinees are available are used as population

distributions. Monte Carlo methods are used to estimate the mean squared

errors for each of the methods for several samples sizes.

Data

Data from three tests will be used as population distributions. The

first test is a 200-item multiple choice licensure test. Due to the amount of

computation involved in computing the estimates for a large number of samples

for a 200-item test, only the 59 internal anchor items will be used. The 59-

item internal anchor is designed as a shorter parallel version of the full

200-item test. For this study responses to 39,149 examinees from a recent

test date were used as a population distribution.

For the other two population distributions, data from the responses of

230,065 examinees on the Mathematics and Social Sciences tests for a recent

October administration of the ACT Assessment were used. Population

distributions for each test were defined as the observed frequency
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distributions of raw scores. Examinees with zero raw scores (5 examinees for

the Mathematics test and 33 examinees for the Social Sciences test) were not

used in order to eliminate examinees who did not respond to any of the items

on the test or whose responses were hand scored, in which case a raw score of

zero was reported in the data set used. This had the effect of setting f(0)

equal to 0 for both tests.

Figure 3 presents the three population distributions used in this study.

Method

For each of the three population distributions 500 samples with sample

sizes 500, 1000, 2000, and 5000 were simulated. For each of the 6000 samples

(3 populaticn distributions by 4 sample sizes by 500 samples) the variable

kernel, fixed kernel, 4-parameter beta binomial and polynomial estimates of

the true distribution were computed. Thus, including the observed

frequencies, five estimates of the porulation distribution were computed for

each sample.

For each estimation method, sample size, and population distribution the

average of the values of ASE over the 500 samples was taken as an estimate of

MSE. In addition, bias squared and variance were also estimated as averages

over the 500 samples of the appropriate values given in Equation 2.

The maximum absolute difference between the population and estimated

cumulative relative frequencies was also computed for each estimation method

in each samle. The average of these values over the 500 samples will be used

as an additional criterion in judging the relative performance of the

estimation methods (this criterion will be denoted K-S because it is based on

a Komolgorov-Smirnov type statistic (Conover, 1980)). The reason for

considering K-S is that for some applications, such as calculating norms and
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equipercenti1e equating, the estimated cumulative relative frequencies rather

than the relative frequencies are used.

Results

Tables 2, 3, and 4 contain the results for the populations corresponding

to the licensure test, ACT Mathematics test, and ACT Social Science test,

respectively. In each table estimates computed using the 500 samples for each

sample size of MSE, bias squared, variance and K-S are reported for each of

the five estimation methods (in addition, the standard errors of K-S are

given). Figures 4 and 5 contain plots of estimates of MSEi and variancci as a

function of raw score for the licensure ard ACT Mathematics tests,

respectively, for a sample size of 1000, where

MSE. = E[i(i) - f(i)]2

variance. = E[?(i)-tiAfE(?(i))12 . (17)

In the following discussion of the results, MSE and K-S are not

distinguished because of the similarity of the results for the two criteria.

Tables 2 through 4 show that all the estimation methods base? on

smoothness assumptions performed better than using the observed frequencies.

For samples sizes less than 5000 the 4-parameter beta binomial method

performed better than the other methods. For a sample size of 5000 the 4-

parameter beta binomial and polynomial methods performed about equivalently

and better than the kernel methods.

The polynomial method had the lowest bias of the four methods based on

smoothness assumptions for all cases in Tables 2, 3, and 4, except for sample

sizes of 500 and 1000 for the ACT Mathematics test. TI ! 4-parameter beta

binomial method had the lowest variance of all the methods for all cases in

Tables 2, 3, and 4.
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The variable kernel method did not consistently perform better than the

fixed kernel method. For the licensure test the fixed kernel method performed

better than the variable kernel method for all sample sizes. For the ACT

tests the variable kernel method tended to have lower MSE than the fixed

kernel method for the higher sample sizes (2000 and 5000 for mathematics and

1000, 2000, and 5000 for social sciences), and lower bias but greater variance

than the Exec kernel method for sample sizes of 2000 and less.

The polynomial method performed worse than the kernel methods for the ACT

Mathematics test for all sample sizes except 5000 and performed worse than the

fixed kernel method for the ACT Social Science test for the sample size of

500. This is in contrast to the polynomial method performing better than the

kernel methods in all other cases.

The results in Table 3 for the ACT Mathematics test can be compared tu

the results in Table 3 of Cope and Kolen (1987), which reports results

analogous to those reported here from a simulation study using as a population

distribution data from an October administration (from a different year than

used here) of the ACT Mathematics test. The values MSE and K-S in Cope and

Kolen's Table 3 for the observed relative frequencies and the 4-parameter beta

binomial method (the only two estimation methods in common with the present

study) are very similar to those reported here in Table 3. Cope and Kolen

investigated kernel methods in which h was fixed across all samples. For

example, their h = 4 kernel method used an h of 4 for all samples. The fixed

kernel method used here performed better than the best performing kernel

method at each sample size in Cope and Kolen.

Discussion and Conclusions

The differences between the methods based on smoothness assumptions and

using observed frequencies was smaller for K-S than for MSE, although the
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pattern of results were generally the same for both criteria. In fact, for

the licensure test for samples of 5000, K-S for the variable kernel method is

larger than K-S for the observed frequencies. The smoothness assumptions have

less of a positive effect in estimating the cumulative distribution than in

estimating the raw score probabilities.

All estimation methods studied here using smoothness assumptions

performed far better than using ,bserved frequencies, especially for smaller

sample sizes. For example, using the 4-parameter beta binomial method in

samples of size 500 yields a lower MSE than using observed frequencies with

samples of size 5000 for the ACT Mathematics and Social Science tests, and

almost as low a value of MSE using observed frequencies with samples of size

5000 for the licensure test. The differences between the methods based on

smoothness assumptions are small compared to the difference between the worst

performing method and using observed frequencies.

The results of the simulation study, although limited by the fact that

only three population distributions were examined, suggest a preference for

the 4-parameter beta binomial method. For the largest sample size the

polynomial method performs similarly to the 4-parameter beta binomial

method. It has been my experience that both the 4-parameter beta binomial

mett.od and the polynomial give good fits to a wide variety of sample

distributions.

The polynomial method performed better than the kernel methods except in

cases in which the variation of the sample relative frequencies around the

true relative frequencies tended to be large, either because of a small sample

size and/or a flat distribution. For example, the polynomial method performed

worse than the 1,ernel method for the ACT Mathematics data for sample sizes
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'ess than 5000. Figure 3 shows that the ACT Mathematics distribution is

relatively flat compared to the other two population distributions.

The poor performance of the polynomial method for the ACT Mathematics

test with smaller sample sizes, relative to the kernel methods, may partly be

due to the model selection strategy used. The logical flaws of this model

selection strategy for choosing an estimate have been mentioned previously.

In practice, a decision of which density estimate to use must be based on

the sample data. An estimate of ASE obtained by the bootstrap, jackknife, or

cross validation would be useful (although this would require extensive

computations for the polynomial method, and to a lesser extent, the 4-

parameter beta binomial method), but shwild probably not be used as the only

information on which to choose an estimate. For example, in Figure 2 the

approximate cross validation procedure picks h = 2 for fixed kernel method.

It is likely that a value of h greater than 2 would be more appropriate here.

For the polynomial and kernel methods it is probably unwise to use an

automatic procedure such as those used in the simulation study to choose an

estimate. The most practical information to use in deciding on an estimate

would be plots of the fitted and raw distributions, chi-square goodness of fit

statistics and fitted versus raw sample moments (for the kernel methods). It

is suggested that for the polynomial and kernel methods the actual estimate to

be used be chosen by looking at the fits for various degrees and window widths

and making a judgment based on this information, rather than using automatic

procedures as in the study. The results reported in Tables 2 through 4 may

either over or underestimate the performance of such subjective procedures for

the kernel and polynomial methods depending on the biases of the person

choosing the estimate for over or under smoothing and the true distribution.
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TABLE 1

Window Width (h) and Associated Values of Err Chosen
Using the Bootstrap and Approximate Cross Validation

Estimates of Err for 10 Simulated Samples

Sample

h for
Minimum

Err Bootstrap
Approximate

Cross Validation

Err h Err h Err

1 20 -.026083 20 -.026083 24 -.026082
2 12 -.026076 28 -.026049 36 -.026031
3 36 -.025999 20 -.025976 16 -.025959
4 24 -.025994 8 -.025919 12 -.025960
5 20 -.026057 8 -.026007 12 -.026043
6 24 -.025912 20 -.025912 16 -.02590(1
7 36 -.026032 24 -.026024 24 -.026024
8 28 -.025999 24 -.025997 20 -.025993
9 24 -.025963 24 -.025963 12 -.025942

10 24 -.025995 12 -.025977 12 -.025977

Mean -.026011 -.025991 -.025992
s.d. .0000526 .0000536 .0000531
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TABLE 2

Fit of Licensure Test Estimated Densities

Sample
Size

Measure of
Fit

Unsmoothed
Sample

Frequencies
Variable
Kernel

Fixed
Kernel

4-Parameter
Beta

Polynomial Binomial

Bias Squared
Variance

.045

31.699

2.030
4.747

1.583

4.969

.783

3.852

.769

2.408

500 MSE 31.744 6.778 6.552 4.636 3.173;:

K-S 32.595 28.505 27.835 24.236 21.842*

(s.e. K-S) (.505) (.475) (.467) (.517) (.475)

Bias Squared .021 1.527 1.011 .581 .713

Variance 15.879 2.722 2.894 1.770 1.193

1000 MSE 15 TOO 4.250 3.905 2.351 1.906*

K-S 23.519 22.218 20.557 17.331 16,442*

(s.e. K-S) (.367) (.363) (.348) (.365) (.356)

Bias Squared .016 1.034 .633 .505 .593

Variance 8.077 1.553 1.642 1.000 .600

2000 MSE 8.093 2.587 2.275 1.505 1.193*

K-S 16.296 16.317 14.540 12.875 11.617*

(s.e. K-S) (.261) (.267) (.254) (.242) (.248)

Bias Squared .007 .691 .441 .411 .634

Variance 3.089 .708 .775 .435 .229

5000 MSE 3.096 1.399 1.216 .846* .863

K-S 10.234 11.588 10.010 8.614* 8.773

(s.e. K-S) (.169) (.169) (.161) (.162) (.165)

Notes: Values of bias squared, variance, and MSE have been multiplied by
1000000, so they are in terms of frequencies for a sample size of

1000.

Within each sample size the lowest values of MSE and K-S are
identified by an 'Ye'.
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TABLE 3

Fit of ACT Mathematics Estimated Densities

Sample
Size

Measure of
Fit

Unsmoothed
Sample

Frequencies
Variable
Kernel

Fixed
Kernel

4-Parameter
Beta

Polynomial Binomial

Bias Squared
Variance

.114

46.472
.632

5.899
.925

4.911
1.423

6.952
.704

3.604
500 MSE 46.586 6.531 5.836 8.375 4.308*

K-S 33.964 24.923 24.078 28.267 23.718*
(s.e. K-S) (.503) (.486) (.481) (.507) (.490)

Bias Squared .048 .571 .798 .890 .624

Variance 23.715 3.141 2.841 4.085 1.745

1000 MSE 23.763 3.712 3.639 4.975 2.369*
K-S 24.582 18.409 18.119 21.196 17.463*
(s.e. K-S) (.361) (.345) (.351) (.359) (.352)

Bias Squared .0157 .538 .656 .200 .524

Variance 11.735 1.698 1.690 2.223 .844

2000 MSE 11.752 2.236 2.346 2.423 1.368*
K-S 16.824 13.174 13.323 14.008 12.476*
(s.e. K-S) (.253) (.243) (.236) (.262) (.246)

Bias Squared .007 .416 .355 .093 .438
Variance 4.689 .762 .916 .666 .319

5000 MSE 4.696 1.178 1.271 .759 .757*
K-S 10.552 8.989 8.978 8.153* 8.468
(s.e. K-S) (.151) (.147) (.133) (.144) (.138)

Notes: Values of bias squared, variance, and MSE have been multiplied by
1000000, so they are in terms of frequencies for a sample size
of 1000.

Within each sample size the lowest values of MSE and K-S are
identified by an
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TABLE 4

Fit of ACT Social Studies Estimated Densities

Sample
S. a

Measure of
Fit

Unsmoothed
Sample

Frequencies
Variable
Kernel

Fixed
Kernel

4-Parameter
Beta

Polyr)mial Binoraial

Bias Squared .112 .338 .330 .279 .307

Variance 36.045 4.609 3.712 4.542 2.189

50C. MSE 36.157 4.947 4.542 4.821 2.496

K-S 34.001 25.296 25.828 26.737 22.167*

(s.e. K-S) (.498) (.466) (.455) (.)50) (.469)

Bias Squared .035 .292 .562 .210 .327

Variance 18.029 2.387 2.198 1.727 1.048

1000 MSE 18.064 2.679 2.759 1.937 1.375*

K-S 23.831 18.131 19.316 17.121 15.914*

(s.e. K-S) (.350) (.327) (.310) (.344) (.326)

Bias Squared .020 .233 .333 .167 .338

Variance 9.075 1.301 1.276 .908 .510

2000 MSE 9.095 1.534 1.609 1.075 .848*

K-S 17.017 13.704 14.402 12.551 11.791*

(s.e. K-S) (.257) (.243) (.237) (.245) (.242)

Bias Squared .009 .188 .207 .107 .371

Variance 3.610 .556 .581 .471 .188

5000 MSE 3.619 .744 .788 .578 .559*

K-S 10.374 9.110 9.404 8.329* 8.427

(s.e. K-S) (.160) (.150) (.142) (.157) (.148)

Notes: Values of bias squared, variance, and MSE have been multiplied by
1000000, so they are in terms of frequencies for a sample size
of 1000.

Within each sample size the lowest values of MSE and K-S are
identified by an '*'.
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